Recursion

Αναδρομή

Christos Katsoulas

What is Recursion?

- A function calls itself.
- Central idea of Computer Science.
- The solution to a problem depends on solutions to smaller instances of the same problem.
- Recursion can solve the problems without iterative control structures ("while" or "for").

```
void countDown(int counter) {
       if counter==0 {
               return;
       else {
               cout<<counter<<endl;</pre>
               countDown(counter-1);
int main() {
       int num=8;
       countdown (num);
```

Sum from zero

Fibonacci numbers

- The first two numbers are o and 1.
- Each subsequent number is the sum of the previous two.
- The sequence F_n of Fibonacci numbers is defined by the recurrence relation:

•
$$F_n = F_{n-1} + F_{n-2}$$

```
int Fib(n) {
    if(n == 1 || n == 2) {
        return 1;
    }
    else{
        return Fib(n-1)+Fib(n-2)
    }
```

How the Fibonacci numbers recursion works

Christos Katsoulas

Simple recursive functions Count Down
Sum from zero (or any other number)
Factorial
Greatest Common Divider
Towers of Hanoi

Towers of Hanoi

OBJECTIVE

• Move the stack to the third rod.

RULES

- Move one disk at a time.
- A disk can be moved only if it is the uppermost disk on a stack.
- No disk may be placed on top of a smaller disk.

RECURSION

• The problem can be solved by breaking it down to smaller problems until a solution is reached.

Recursion requires Abstraction

IDEA

1. Move n-1 disks to the second rod (B).

2. Move the n disk from the first rod (A) to the third rod (C).

3. Move n-1 disks from B to Ç.

ABSTRACTION

During steps 1 and 3 do not mess with details. Hide details and represent only a certain intention.

В

Α

Christos Katsoulas

Recursion

Divide & Conquer Algorithms

Dynamic Programming

