Recursion

Avaopoun

volid countDown (int counter) {

« A function calls if counter==0 {

itself.
return;

Central idea of |

Computer Science.
_ else {
The solutionto a

What |S problem depends cout<<counter<<endl;
on solutions to countDown (counter-1) ;

RECU I‘Sion? smaller instances of

the same problem.

Recursion can solve /
the problems int main() {
without iterative

control structures
(“while” or “for"). countdown (num) ;

int num=8;

Christos Katsoulas

int sumFromZero (int n) {
if (n == 0) return 0O;

else return sum(n - 1) + n;

Sum from zero

sum(4)=6+4=10

sum(4) sum(3)+4

sum(3)=3+3=6

sum(3) sum(2)+3

sum(2) sum(1)+2 sum(2)=1+2=3

sum(1) sum(0)+1 sum(1)=0+1=1

AN

sum(o) 0 sum(0)=0

Christos Katsoulas

Fibonacci

numbers

* The first two
numbers are o and
1.

* Each subsequent
number is the sum
of the previous two.

* The sequence F, of
Fibonacci numbers
is defined by the
recurrence relation:

: Fn = Fn-1+ Fn-z
*F,=0

*F. =1

1

Christos Katsoulas

int Fib (n) {
if(n == |
return 1;

}

else{

return Fib (n-1)+Fib (n-2)

int Fib ' '
int Fib(n) { Calculate Fibonacci (4)

if(n ==1 || n == 2) return 1;

else return Fib(n-1)+Fib (n-2) ;

How the
Fibonacci

numbers
recursion
works

Christos Katsoulas

Count Down
Simp|e Sum from zero (or any other number)

Factorial
Greatest Common Divider

recursive
functions

Towers of Hanoi

Christos Katsoulas

OBJECTIVE

* Move the stack to the third
rod.

RULES

* Move one disk at a time.

* A disk can be moved only if

Towers of it is the uppermost disk on

a stack.

Hanol
el * No disk may be placed on

top of a smaller disk.
RECURSION

* The problem can be solved
by breaking it down to
smaller problems until a Towers of Hanoi
solution is reached.

Christos Katsoulas

Recursion

requires
Abstraction

IDEA

1. Move n-1 disks to the
second rod (B).

2. Move the n disk from the
first rod (A) to the third rod

Q).
3. Move n-1 disks fro%
ABSTRACTION

During steps 1 and 3 do not
mess with details. Hide

details and represent only a
certain intention.

Christos Katsoulas

Recursion

Divide &
Conquer

Algorithms

Dynamic
Programming

Divide &
Conquer
Algorithms

Dynamic
Programming

A recursive algorithm usually is not
the most efficient. We have to use
further programming techniques

Christos Katsoulas

	Slide 1: Recursion
	Slide 2: What is Recursion?
	Slide 3: Sum from zero
	Slide 4: Fibonacci numbers
	Slide 5: How the Fibonacci numbers recursion works
	Slide 6: Simple recursive functions
	Slide 7: Towers of Hanoi
	Slide 8: Recursion requires Abstraction
	Slide 9: Recursion Divide & Conquer Algorithms Dynamic Programming

