
Recursion
Αναδρομή

Christos Katsoulas



What is 
Recursion?

 A function calls 
itself.

 Central idea of 
Computer Science.

 The solution to a 
problem depends 
on solutions to 
smaller instances of 
the same problem.

 Recursion can solve 
the problems 
without iterative 
control structures 
(“while” or “for”).

void countDown(int counter){

if counter==0 {

return;

}

else {   

cout<<counter<<endl;

countDown(counter-1);

}

}

int main(){

int num=8;

countdown(num);

}

Christos Katsoulas



8-3

int sumFromZero (int n){

if (n == 0) return 0;

else return sum(n - 1) + n;

}

Sum from zero return

sum(3)+4

sum(2)+3

sum(1)+2

sum(0)+1

0

sum()

sum(4)

sum(3)

sum(2)

sum(1)

sum(0) sum(0)=0

sum(1)=0+1=1

sum(2)=1+2=3

sum(3)=3+3=6

sum(4)=6+4=10

Christos Katsoulas



Fibonacci 
numbers

int Fib(n){

if(n == 1 || n == 2){

return 1;

}

else{

return Fib(n‐1)+Fib(n‐2)

}

}

 The first two 
numbers are 0 and 
1.

 Each subsequent 
number is the sum 
of the previous two.

 The sequence Fn of 
Fibonacci numbers 
is defined by the 
recurrence relation:

 Fn = Fn-1 + Fn-2

 F0 = 0

 F1 = 1

Christos Katsoulas



How the 
Fibonacci 
numbers 
recursion 
works

int Fib(n){

if(n == 1 || n == 2) return 1;

else return Fib(n‐1)+Fib(n‐2);

}

Fib(4)

Fib(3)

Fib(2)1

Fib(1)1

2

Fib(2)1

3

Calculate Fibonacci (4)

Fib (4) = 3

Christos Katsoulas



Simple 
recursive 
functions

 Count Down

 Sum from zero (or any other number)

 Factorial

 Greatest Common Divider

 Towers of Hanoi

Christos Katsoulas



Towers of 
Hanoi

Towers of Hanoi

Towers of Hanoi

O B J E C T I V E

 Move the stack to the third 
rod.

R U L E S

 Move one disk at a time.

 A disk can be moved only if 
it is the uppermost disk on 
a stack.

 No disk may be placed on 
top of a smaller disk.

R E C U R S I O N

 The problem can be solved 
by breaking it down to 
smaller problems until a 
solution is reached.

Christos Katsoulas



Recursion 
requires 
Abstraction

A                   B                   C

A                   B                   C

A                   B                   C

I D E A

1. Move n-1 disks to the 
second rod (B).

2. Move the n disk from the 
first rod (A) to the third rod 
(C).

3. Move n-1 disks from B to C.

A B S T R A C T I O N

During steps 1 and 3 do not 
mess with details. Hide 
details and represent only a  
certain intention.

Christos Katsoulas



Recursion 

Divide & 
Conquer 
Algorithms 

Dynamic 
Programming 

Recursion

Dynamic 
Programming

Divide & 
Conquer 

Algorithms

A recursive algorithm usually is not 
the most efficient. We have to use 
further programming techniques

Christos Katsoulas


	Slide 1: Recursion
	Slide 2: What is Recursion?
	Slide 3: Sum from zero
	Slide 4: Fibonacci numbers
	Slide 5: How the Fibonacci numbers recursion works
	Slide 6: Simple recursive functions
	Slide 7: Towers of Hanoi
	Slide 8: Recursion requires Abstraction
	Slide 9: Recursion     Divide & Conquer Algorithms    Dynamic Programming 

